Abstract
The present attempt is to design a novel approach for the numerical solution of fractional telegraph equation. The novelty of the paper exist in solving the time fractional telegraph equation with differential quadrature method based on cubic B-spline (MHB-DQM) for the fractional parameter 1<γ<2. Telegraph equation is used in electric transmission line to find distance and time. The fractional derivative involved in the equation is discretized using Caputo derivative. On the other hand, the terms involving space derivatives are approximated by fusion of differential quadrature method with modified version of cubic B-spline. Here B-spline acts as a basis to compute the weighted coefficients of differential quadrature method. This phenomenon reduce the PDE to the system of equations, which then are solved using suitable numerical technique. A matrix based technique is used to ensure the stability of the proposed scheme. Feasibility and applicability of this algorithm is performed using test problems. Approximate solutions obtained by MHB-DQM is portrayed through graph and tables in an interactive way. These results show that solution converges for smaller values of time and at various values of fractional parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.