Abstract

We develop an efficient numerical scheme for the 3D mean-field spherical dynamo equation. The scheme is based on a semi-implicit discretization in time and a spectral method in space based on the divergence-free spherical harmonic functions. A special semi-implicit approach is proposed such that at each time step one only needs to solve a linear system with constant coefficients. Then, using expansion in divergence-free spherical harmonic functions in the transverse directions allows us to reduce the linear system at each time step to a sequence of one-dimensional equations in the radial direction, which can then be efficiently solved by using a spectral-element method. We show that the solution of fully discretized scheme remains bounded independent of the number of unknowns, and present numerical results to validate our scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.