Abstract
In the high-dimensional data setting, the sample covariance matrix is singular. In order to get a numerically stable and positive definite modification of the sample covariance matrix in the high-dimensional data setting, in this paper we consider the condition number constrained covariance matrix approximation problem and present its explicit solution with respect to the Frobenius norm. The condition number constraint guarantees the numerical stability and positive definiteness of the approximation form simultaneously. By exploiting the special structure of the data matrix in the high-dimensional data setting, we also propose some new algorithms based on efficient matrix decomposition techniques. Numerical experiments are also given to show the computational efficiency of the proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.