Abstract

The fundamental purpose of the present paper is to apply an effective numerical algorithm based on the mixture of homotopy analysis technique, Sumudu transform approach and homotopy polynomials to obtain the approximate solution of a nonlinear fractional Drinfeld–Sokolov–Wilson equation. The nonlinear Drinfeld–Sokolov–Wilson equation naturally occurs in dispersive water waves. The uniqueness and convergence analysis are shown for the suggested technique. The convergence of the solution is fixed and managed by auxiliary parameter ℏ. The numerical results are shown graphically. Results obtained by the application of the technique disclose that the suggested scheme is very accurate, flexible, effective and simple to use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.