Abstract
Recent developments within the field of tissue engineering (TE) have shown that biomaterial scaffold systems can be augmented via the incorporation of gene therapeutics. The objective of this study was to assess the potential of the activated polyamidoamine dendrimer (dPAMAM) transfection reagent (SuperfectTM) as a gene delivery system to mesenchymal stem cells (MSCs) in both monolayer and 3D culture on collagen based scaffolds. dPAMAM-pDNA polyplexes at a mass ratio (M:R) 10:1 (dPAMAM : pDNA) (1 ug pDNA) were capable of facilitating prolonged reporter gene expression in monolayer MSCs which was superior to that facilitated using polyethylenimine (PEI)-pDNA polyplexes (2 ug pDNA). When dPAMAM-pDNA polyplexes (1 ug pDNA) were soak loaded onto a collagen-chondroitin sulphate (CS) scaffold prolonged transgene expression was facilitated which was higher than that obtained for a PEI-pDNA polyplex (2 ug pDNA) loaded scaffold. Transgene expression was dependent on the composite nature of the collagen scaffold with varying expression profiles obtained from a suite of collagen constructs including a collagen alone, collagen-CS, collagen-hydroxyapatite, collagen-nanohydroxyapatite and collagen-hyaluronic acid scaffold. Therefore, the dPAMAM vector described herein represents a biocompatible, effective gene delivery vector for TE applications which, via matching with a particular composite scaffold type, can be tailored for regeneration of various tissue defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.