Abstract

We present a new NMR experiment for estimating the type and degree of sugar-puckering in high-molecular-weight unlabeled DNA molecules. The experiment consists of a NOESY sequence preceded by a constant-time scalar coupling period. Two subexperiments are compared, each differing in the amount of time the (3)J(H3'H2') and (3)J(H3'H2") couplings are active on the H3' magnetization. The resultant data are easy to analyze, since a comparison of the signal intensities of any resolved NOE cross peak originating from H3' atoms of the duplex can be used to estimate the sum of the (3)J(H3'H2') and (3)J(H3'H2") couplings and thus the puckering type of the deoxyribose ring. Isotope filters to eliminate signals of the (13)C-labeled component in the F1-dimension are implemented, facilitating analyses of high-molecular-weight protein-DNA complexes containing (13)C-labeled protein and unlabeled DNA. The utility of the experiment is demonstrated on the 26-kDa Dead Ringer protein-DNA complex and reveals that the DNA uniformly adopts the S-type configuration when bound to protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.