Abstract

Body Area Networks (BANs) consist of various sensors which gather patient’s vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol.

Highlights

  • Due to the growth in healthcare technology and rise in its costs, recognizable attention has been given to the human body with miniaturized, low power and intelligent sensors that can be implanted in or worn on the body

  • The proposed algorithm selects the best hop for each node based on a link cost function and hop counts to the sink of the neighboring nodes

  • The link cost function takes into account Quality of Service (QoS) requirements and uses the residual energy, free queue size, and the link reliability of the neighboring nodes

Read more

Summary

Introduction

Due to the growth in healthcare technology and rise in its costs, recognizable attention has been given to the human body with miniaturized, low power and intelligent sensors that can be implanted in or worn on the body. A Body Sensor Network (BSN) or Body Area Network (BAN) is a radio frequency (RF)-based wireless technology which enables monitoring of the patients, whereby physicians or doctors receive information from those patients without disturbing their day to day life (see Fig 1). BAN communications architecture is divided into three components: intra-BAN, inter-BAN, and beyond-BAN [1,2,3]. Intra-BAN communication controls and manages wearable or implanted sensors. In this tier, the patient’s vital signs are collected and transmitted to the sink. In inter-BAN communication, collected information from the body is forwarded to a gateway. Communications between the gateway and the doctors are related to the beyond-BAN tier. In large-scale networks of BANs specially in the inter-BAN and the beyond-BAN communications, cloud computing infrastructure can facilitate network

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.