Abstract

A novel electrochemical cytosensor was developed for the fast and high-sensitivity recognition of drug-resistant leukemia K562/ADM cells based on the P-glycoprotein (P-gp) expression level on a cell membrane. The nanocomposite interface of the gold nanoparticles/polyaniline nanofibers (AuNPs/PANI-NF) was chosen to design the biosensor for electrochemical detection. Au/PANI-NF-based cytosensors coated with anti-P-glycoprotein (anti-P-gp) molecules could provide a biomimetic interface for the immunosensing of cell surface P-glycoprotein, and thus could capture the over-expression P-gp cells. Transmission electron microscopy (TEM) indicated that the gold nanoparticles were uniformly anchored along the structure of the PANI-NF surface, displaying fibrillar morphology with a diameter of ∼70 nm, and atomic force microscopy (AFM) further presented the morphology of the nanocomposite film. Owing to the high affinity of anti-P-gp for leukemia K562/ADM cells of the propounded sensing platform, the proposed biosensor exhibited excellent analytical performance for leukemia K562/ADM cells, ranging from 1.6 × 10(2) to 1.6 × 10(6) cells per mL with a detection limit of 80 cells per mL. Recovery experiments indicated that the sensitivity reported here is suitable for practical application. The cell surface P-gp expression level was analysed by flow cytometric experiments, which confirmed the above recognized result. This strategy is also a cost-effective and convenient operation, implying great promise for the sensitive recognition of cancer cells and cell surface receptors; thus, it is helpful in cancer diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call