Abstract

A novel multirate method of simulating power-electronic-based systems containing a wide range of time scales is presented. In this method, any suitable integration algorithm, with fixed or variable time-step, can be applied to the fast and/or slow subsystems. The subsystems exchange coupling variables at a communication interval that can be fixed or varied dynamically depending upon the state of the system variables. The proposed multirate method is applied to two example power systems that include power-electronic subsystems. Increases in simulation speed of 183-281% over established single-rate integration algorithms are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.