Abstract
This paper focuses on the multiobjective design optimization of the permanent magnet synchronous linear motors (PMSLMs), which are applied to a high-precision laser engraving machine. A novel efficient multiobjective design optimization method for a PMSLM is proposed to achieve optimal performances as indicated by high average thrust, low thrust ripple, and low total harmonic distortion at different running speeds. First, based on the finite-element analysis (FEA) data, a regression machine learning algorithm, called an extreme learning machine (ELM), is introduced to solve the calculation modeling problem by mapping out the nonlinear and complex relationship between input structural factors and output motor performances. Comparative simulation experiments conducted using the traditional analytical modeling method and another machine learning modeling method, i.e., support vector machine, confirm the superiority of the ELM. Then, a new bionic intelligent optimization algorithm, called the gray wolf optimizer algorithm, is used to search the best optimization performances and structural parameters by performing iteration optimization calculation for multiobjective functions. Finally, FEA and prototype motor experiments prove the effectiveness and validity of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.