Abstract

An efficient multigrid-FEM method for the detailed simulation of solid–liquid two phase flows with large number of moving particles is presented. An explicit fictitious boundary method based on a FEM background grid which covers the whole computational domain and can be chosen independently from the particles of arbitrary shape, size and number is used to deal with the interactions between the fluid and the particles. Since the presented method treats the fluid part, the calculation of forces and the movement of particles in a subsequent manner, it is potentially powerful to efficiently simulate real particulate flows with huge number of particles. The presented method is first validated using a series of simple test cases, and then as an illustration, simulations of three big disks plunging into 2000 small particles, and of sedimentation of 10,000 particles in a cavity are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.