Abstract

A new and efficient form of Featherstone’s multibody divide and conquer algorithm (DCA) is presented and evaluated. The DCA was the first algorithm to achieve theoretically the optimal logarithmic time complexity with a theoretical minimum of parallel computer resources for general problems of multibody dynamics; however, the DCA is extremely inefficient in the presence of small to modest parallel computers. This alternative efficient DCA (DCAe) approach demonstrates that large DCA subsystems can be constructed using fast sequential techniques to realize a substantial increase in speed. The usefulness of the DCAe is directly demonstrated in an application to a four processor workstation and compared with the results from the original DCA and a fast sequential recursive method. Previously the DCA was a tool intended for a future generation of parallel computers; this enhanced version delivers practical and competitive performance with the parallel computers of today.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.