Abstract

Digital Microfluidic Biochips (DMFBs) will require error-free synthesis techniques which can function at much higher speed while implementing on real-time systems and capable of tackling more complex assay operations. Until now various bio-assays are successfully implemented based on different mixing modules present on such lab-on-chips. In present work, the concept of such dedicated virtual modules has been eliminated and a novel module-less-synthesis (MLS) method is proposed for accomplishing high-performance bio-protocols. Various shift-patterns (movements) of the micro-droplets are identified to accomplish entire mixing in lesser time compared to earlier module-based synthesis methods. We have also computed the percentage of mixing accomplishment for each directional-shift of the mixer-droplet. However, path congestion problem and operational errors are inevitable in MLS approach. Hence, the path congestion and washing problem in MLS is addressed by tweaking the earlier MLS approach and a new modified-MLS (MMLS) method is proposed. Finally, washing optimization technique on MMLS method is also given. Different real-life bio assays like PCR, IVD are tested with the proposed technique as well as synthetic benchmarks (hard test benches) are also incorporated in the experiments. For both kind of benchmarks synthesis performance improved with bioassay completion time (T_{mathrm{max}}) significantly reduced compared to existing synthesis approaches on DMFB platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.