Abstract
In this paper, an efficient modified Differential Evolution algorithm, named EMDE, is proposed for solving constrained non-linear integer and mixed-integer global optimization problems. In the proposed algorithm, new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best,better and the worst individuals among the three randomly selected vectors is introduced. The proposed novel approach to mutation operator is shown to enhance the global and local search capabilities and to increase the convergence speed of the new algorithm compared with basic DE. EMDE uses Deb’s constraint handling technique based on feasibility and the sum of constraints violations without any additional parameters. In order to evaluate and analyze the performance of EMDE, Numerical experiments on a set of 18 test problems with different features, including a comparison with basic DE and four state-of-the-art evolutionary algorithms are executed. Experimental results indicate that in terms of robustness, stability and efficiency, EMDE is significantly better than other five algorithms in solving these test problems. Furthermore, EMDE exhibits good performance in solving two high-dimensional problems, and it finds better solutions than the known ones. Hence, EMDE is superior to the compared algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.