Abstract

MILU preconditioning is known to be the optimal one among all the ILU-type preconditionings in solving the Poisson equation with Dirichlet boundary condition. It is optimal in the sense that it reduces the condition number from O(h−2), which can be obtained from other ILU-type preconditioners, to O(h−1). However, with Neumann boundary condition, the conventional MILU cannot be used since it is not invertible, and some MILU preconditionings achieved the order O(h−1) only in rectangular domains.In this article, we consider a standard finite volume method for solving the Poisson equation with Neumann boundary condition in general smooth domains, and introduce a new and efficient MILU preconditioning for the method in two dimensional general smooth domains. Our new MILU preconditioning achieved the order O(h−1) in all our empirical tests. In addition, in a circular domain with a fine grid, the CG method preconditioned with the proposed MILU runs about two times faster than the CG with ILU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call