Abstract

In this paper, a low-cost, low-power and high performance micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of an asynchronous interface, a register bank, a reconfigurable filter, a slop-feature forecast, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM), and a multi-sensor controller. To improve the system performance and expansion abilities, the asynchronous interface is added for handling signal exchanges between different clock domains. To eliminate the noise of various bio-signals, the reconfigurable filter is created to provide the functions of average, binomial and sharpen filters. The slop-feature forecast and the lossless data encoder is proposed to reduce the data of various biomedical signals for transmission. Furthermore, the ECC encoder is added to improve the reliability for the wireless transmission and the UART interface is employed the proposed design to be compatible with wireless devices. For long-term healthcare monitoring application, a power management technique is developed for reducing the power consumption of the WBSN system. In addition, the proposed design can be operated with four different bio-sensors simultaneously. The proposed design was successfully tested with a FPGA verification board. The VLSI architecture of this work contains 7.67-K gate counts and consumes the power of 5.8 mW or 1.9 mW at 100 MHz or 133 MHz processing rate using a TSMC 0.18 μm or 0.13 μm CMOS process. Compared with previous techniques, this design achieves higher performance, more functions, more flexibility and higher compatibility than other micro controller designs.

Highlights

  • A wireless body sensor network (WBSN) [1,2] consists of spatially distributed autonomous body sensors that are used to monitor physical signals, such as temperature, blood pressure, electrocardiogram (ECG), and heartbeat, and transmit the information obtained through the wireless network to central servers

  • WBSN systems are widely used for long-term healthcare monitoring applications, their acceptance is limited by the power, size, and cost constrains of each sensor node in corresponding to limited resource of battery, memory, computational speed, and wireless communication bandwidth

  • The Design Compiler, an electronic design automation (EDA) tool, was used to synthesize the proposed micro control unit (MCU) design based on TSMC 0.18 μm and 0.13 μm CMOS

Read more

Summary

Introduction

A wireless body sensor network (WBSN) [1,2] consists of spatially distributed autonomous body sensors that are used to monitor physical signals, such as temperature, blood pressure, electrocardiogram (ECG), and heartbeat, and transmit the information obtained through the wireless network to central servers. WBSN systems are helpful for healthcare monitoring applications. WBSN systems can monitor the blood pressure for 24 hours, avoiding this situation and providing more accurate information for diagnostic purposes. WBSN systems are widely used for long-term healthcare monitoring applications, their acceptance is limited by the power, size, and cost constrains of each sensor node in corresponding to limited resource of battery, memory, computational speed, and wireless communication bandwidth. It is important to develop low-power, low-cost, small-size, and high performance wireless body sensor nodes

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call