Abstract
A parameter-optimized (2, 4) stencil based locally-one-dimensional (LOD) finite-difference time-domain (FDTD) is presented with much reduced numerical dispersion errors. The method is first proved to be unconditionally stable. Then by using different optimization schemes, the method is optimized to satisfy different accuracy requirements, such as minimum dispersion errors in the axial directions, in the diagonal direction, and in the specified angles. Performances of the parameter-optimized LOD-FDTD with different time steps and frequencies are also studied. It is found that the parameter optimization can significantly reduce numerical dispersion errors, bringing them down to the level of the conventional FDTD but with the time step exceeding the CFL limit and without much additional computational cost. In addition, the optimized parameters are not sensitive to frequencies; in particular, the optimized parameters obtained at a higher frequency still present low numerical dispersion errors at a lower frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.