Abstract

Sulfoxonium ylides are the viable alternatives for diazo compounds as carbene precursors. Unlike diazo compounds, these are bench‐stable and crystalline solids. However, the existing methods for the synthesis of sulfoxonium ylides have disadvantages related to the yields, substrate scope, and usage of expensive catalysts. Therefore, it is necessary to develop efficient and competitive protocols for the preparation of sulfoxonium ylides. In this study, we developed an economically affordable protocol for the synthesis of sulfoxonium ylides from diazo compounds using copper powder as a catalyst. This protocol leads to the efficient multigram‐scale synthesis of a wide range of sulfoxonium ylides in good yields. Further, we demonstrated scandium triflate–catalyzed carbene insertion into the N−H bond from sulfoxonium ylide. A variety of anilines and sulfoxonium ylides with various functional groups reacted well and produced the corresponding α‐amino esters in good yields. All the synthesized compounds were characterized using various standard spectroscopic and analytical techniques. We also used computational methods to understand the electronic structure of all the sulfoxonium ylides using geometry optimization, frequency calculation, molecular orbital and natural bond orbital analysis, and energy decomposition analysis. Our computational results revealed that the interaction between carbene and dimethyl sulfoxide is covalent in nature and stable enough to handle in the absence of any catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.