Abstract
Signal dependent Karhunen-Loeve transform (KLT), also called factor analysis or principal component analysis (PCA), has been of great interest in applied mathematics and various engineering disciplines due to optimal performance. However, implementation of KLT has always been the main concern. Therefore, fixed transforms like discrete Fourier (DFT) and discrete cosine (DCT) with efficient algorithms have been successfully used as good approximations to KLT for popular applications spanning from source coding to digital communications. In this paper, we propose a simple method to derive explicit KLT kernel, or to perform PCA, in closed-form for first-order autoregressive, AR (1), discrete process. It is a widely used approximation to many real world signals. The merit of the proposed technique is shown. The novel method introduced in this paper is expected to make real-time and data-intensive applications of KLT, and PCA, more feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.