Abstract

Artificial intelligence algorithms have an important and effective role in the medical field, especially in the field of diagnosing diseases. This research focuses on predicting the diagnosis of gestational diabetes by using the Iterative Dichotomiser3 (ID3) classifier algorithm, which is utilized to identify gestational diabetes; it was one of the most significant algorithms employed in this study. Training and testing are two critical phases of the research study. This study employed the Pima Indians Diabetes dataset, which comprised 768 women aged 21 and abovewith the eight reported traits. A feature selection stage, a discretization step, and using the classifier model for producing decision rules are all part of the Pima Indians diabetes data gathering process (Diabetes Dataset). In this study, the decision tree is employed to develop the classifier model, which is based on Diabetes training. The Iterative Dichotomiser3 (ID3) technique may be used to run the decision tree classification process. Diabetes is tested using decision rules, and the classifier implementation confusion matrix was retrieved from the testing portion. The system delivered high-quality results with a 94 percent accuracy rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.