Abstract

Undamped oscillators are often used to attenuate and control excess vibration in elastic structures. In this paper, vibration absorbers are used to impose nodes, i.e., points of zero vibration, along an arbitrarily supported linear structure externally forced by multiple steady-state harmonic excitations. An efficient approach is proposed to tune the absorber parameters based on the active force method. Using the active force approach, the oscillators are first replaced with the unknown restoring forces they exert. These restoring forces are found by enforcing the required node locations, and they correspond to the solution of a set of linear algebraic equations, which can be obtained using Gauss elimination. These restoring forces are subsequently used to tune the sprung masses. Because of the computational efficiency of the proposed method, design plots can be easily generated, from which specific sets of oscillator parameters can be selected. Even if the input consists of multiple frequencies, it is possible to induce multiple nodes anywhere on the structure by attaching properly tuned spring–mass oscillators. An efficient procedure to tune the oscillator parameters necessary to impose nodes at the desired locations is outlined in detail, and numerical case studies are presented to verify the utility of the proposed scheme to impose multiple nodes along an arbitrarily supported elastic structure subjected to external excitations consisting of multiple harmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.