Abstract
Qingjin Yiqi Granules (QJYQ) is a Traditional Chinese Medicines (TCMs) prescription for the patients with post-COVID-19 condition. It is essential to carry out the quality evaluation of QJYQ. A comprehensive investigation was conducted by establishing deep-learning assisted mass defect filter (deep-learning MDF) mode for qualitative analysis, ultra-high performance liquid chromatography and scheduled multiple reaction monitoring method (UHPLC-sMRM) for precise quantitation to evaluate the quality of QJYQ. Firstly, a deep-learning MDF was used to classify and characterize the whole phytochemical components of QJYQ based on the mass spectrum (MS) data of ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Secondly, the highly sensitive UHPLC-sMRM data-acquisition method was established to quantify the multi-ingredients of QJYQ. Totally, nine major types of phytochemical compounds in QJYQ were intelligently classified and 163 phytochemicals were initially identified. Furthermore, fifty components were rapidly quantified. The comprehensive evaluation strategy established in this study would provide an effective tool for accurately evaluating the quality of QJYQ as a whole.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.