Abstract

In this article, we propose a new method for low-rank completion of a large sparse matrix, subject to non-negativity constraint. As a challenging prototype of this problem, we have in mind the well-known Netflix problem. Our method is based on the derivation of a constrained gradient system and its numerical integration. The methods we propose are based on the constrained minimization of a functional associated to the low-rank completion matrix having minimal distance to the given matrix. In the main 2-level method, the low-rank matrix is expressed in the form of the non-negative factorization X = eUVT, where the factors U and V are assumed to be normalized with unit Frobenius norm. In the inner level—for a given e—we minimize the functional; in the outer level, we tune the parameter e until we reach a solution. Numerical experiments on well-known large test matrices show the effectiveness of the method when compared with other algorithms available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.