Abstract
An efficient method for nonlinear fractional differential equations is proposed in this paper. This method consists of 2 steps. First, we linearize the nonlinear operator equation by quasi‐Newton's method, which is based on Fréchet derivative. Then we solve the linear fractional differential equations by the simplified reproducing kernel method. The convergence of the quasi‐Newton's method is discussed for the general nonlinear case as well. Finally, some numerical examples are presented to illustrate accuracy, efficiency, and simplicity of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.