Abstract

BackgroundWith the popularization of electronic health records in China, the utilization of digitalized data has great potential for the development of real-world medical research. However, the data usually contains a great deal of protected health information and the direct usage of this data may cause privacy issues. The task of deidentifying protected health information in electronic health records can be regarded as a named entity recognition problem. Existing rule-based, machine learning–based, or deep learning–based methods have been proposed to solve this problem. However, these methods still face the difficulties of insufficient Chinese electronic health record data and the complex features of the Chinese language.ObjectiveThis paper proposes a method to overcome the difficulties of overfitting and a lack of training data for deep neural networks to enable Chinese protected health information deidentification.MethodsWe propose a new model that merges TinyBERT (bidirectional encoder representations from transformers) as a text feature extraction module and the conditional random field method as a prediction module for deidentifying protected health information in Chinese medical electronic health records. In addition, a hybrid data augmentation method that integrates a sentence generation strategy and a mention-replacement strategy is proposed for overcoming insufficient Chinese electronic health records.ResultsWe compare our method with 5 baseline methods that utilize different BERT models as their feature extraction modules. Experimental results on the Chinese electronic health records that we collected demonstrate that our method had better performance (microprecision: 98.7%, microrecall: 99.13%, and micro-F1 score: 98.91%) and higher efficiency (40% faster) than all the BERT-based baseline methods.ConclusionsCompared to baseline methods, the efficiency advantage of TinyBERT on our proposed augmented data set was kept while the performance improved for the task of Chinese protected health information deidentification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.