Abstract

A method is presented for tracing the locus of a specific peak in the frequency response under variation of a parameter. It is applicable to periodic, steady-state vibrations of harmonically forced nonlinear mechanical systems. It operates in the frequency domain and its central idea is to assume a constant phase lag between forcing and response. The method is validated for a two-degree-of-freedom oscillator with cubic spring and a bladed disk with shroud contact. The method provides superior computational efficiency, but is limited to weakly-damped systems. Finally, the capability to reveal isolated solution branches is highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.