Abstract

ABSTRACT To accurately simulate the electromagnetic scattering from a three-dimensional (3-D) coated object half-buried in perfectly electrically conductor (PEC) rough surface, an efficient method combining the 3-D vector finite element method-boundary integral method (FEM-BIM) with fast multipole method (FMM) is proposed in this paper. FEM is used to model the coated object and the multiple interactions between the half-buried object and rough surface are handled by FMM-enhanced BIM. According to the characteristics of the FEM-BIM matrix equations, a hybrid solver is adopted to solve the matrix equations. In addition, OpenMP parallel acceleration technique is used in the numerical code to accelerate the intensive computations of the prediction process. The accuracy and efficiency of our numerical code are validated by multilevel fast multipole method (MLFMM) in FEKO for both TE and TM polarizations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call