Abstract

Shape representation plays a vital role in any shape optimization exercise. The ability to identify a shape with good functional properties is dependent on the underlying shape representation scheme, the morphing mechanism and the efficiency of the optimization algorithm. This article presents a novel and efficient methodology for morphing 3D shapes via smart repair of control points. The repaired sequence of control points are subsequently used to define the 3D object using a B-spline surface representation. The control points are evolved within the framework of a memetic algorithm for greater efficiency. While the authors have already proposed an approach for 2D shape matching, this article extends it further to deal with 3D shape matching problems. Three 3D examples and a real customized 3D earplug design have been used as examples to illustrate the performance of the proposed approach and the effectiveness of the repair scheme. Complete details of the problems are presented for future work in this direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call