Abstract

Thermoplastic polymers used in aeronautical structures such as poly-ether-ether-ketone (PEEK) usually exhibit nonlinear stress-strain relationships, which can be usually predicted by the physical and phenomenological models. For different thermoplastic polymers, however, existing models may encounter difficulties in reasonably predicting the stress-strain relationships. By reasonably using experimental data, the machine learning-based model can accurately predict the stress-strain relationships. In this paper, an efficient machine learning-based model is built to predict the stress-strain relationships of thermoplastic polymers by using the Kriging model, where limited testing data are merely used. Experiments of 69 specimens for PEEK are firstly performed under uniaxial tensile, where the temperatures range from 23 °C to 140 °C and the strain rates range from 10−3 s−1 to 10−1 s−1. Genetic algorithm is employed to train the proposed model based on the stress-strain relationships obtained from experiments. Moreover, the results predicted by the proposed Kriging-based model are compared with those obtained from the DSGZ (Duan-Saigal-Greif-Zimmerman) model. The results indicate that the Kriging-based model possesses better accuracy, lower complexity, and better robustness than the selected model, because the prior estimation is introduced by the assumption of Gaussian stochastic processes. In addition, the proposed model is also applied to Poly-Propylene (PP), PEEK at high temperatures, and polycarbonate (PC), it can be found that the Kriging-based model can also predict the stress-strain relationships of other amorphous and semi-crystalline thermoplastic polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call