Abstract

Brain magnetic resonance images (MRI) are widely used for the classification of Alzheimer's disease (AD). The size of 3D images is, however, too large. Some of the sliced image features are lost, which results in conflicting network size and classification performance. This article uses key components in the transformer model to propose a new lightweight method, ensuring the lightness of the network and achieving highly accurate classification. First, the transformer model is imitated by using image patch input to enhance feature perception. Second, the Gaussian error linear unit (GELU), commonly used in transformer models, is used to enhance the generalization ability of the network. Finally, the network uses MRI slices as learning data. The depthwise separable convolution makes the network more lightweight. Experiments are carried out on the ADNI public database. The accuracy rate of AD vs. normal control (NC) experiments reaches 98.54%. The amount of network parameters is 1.3% of existing similar networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.