Abstract

Reliability Block Diagrams (RBDs) are widely used in reliability engineering to model how the system reliability depends on the reliability of components or subsystems. In this paper, we present librbd, a C library providing a generic, efficient and open-source solution for time-dependent reliability evaluation of RBDs. The library has been developed as a part of a project for reliability evaluation of complex systems through a layered approach, combining different modeling formalisms and solution techniques at different system levels. The library achieves accuracy and efficiency comparable to, and mostly better than, those of other well-established tools, and it is well designed so that it can be easily used by other libraries and tools.

Highlights

  • Reliability is defined as “the ability of a system or component to perform its required functions under stated conditions for a specified period of time” [1]

  • We presented librbd, an open source optimized library for reliability evaluation using the Reliability Block Diagrams (RBDs) formalism

  • We showed its execution times on different platforms and performed a comparison with the most similar tool identified at the state-of-the-art

Read more

Summary

Introduction

Reliability is defined as “the ability of a system or component to perform its required functions under stated conditions for a specified period of time” [1]. Combinatorial models: they allow to efficiently evaluate reliability under the strong assumption of statistically independent components [3,4]. These models include Reliability Block Diagrams (RBDs) [5,6], Fault Trees (FTs) [7,8], Reliability Graphs (RGs) [9,10] and Fault Trees with Repeated Events (FTREs) [8,11]

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.