Abstract

Abstract In this paper, an efficient Legendre pseudospectral approach for the accurate solution of nonlinear quasi bang-bang optimal control problems (OCPs) is investigated. In this approach, after linearizing the dynamical system, control and state functions are considered as piecewise constant and piecewise continuous polynomials, respectively, and the switching points are also taken as decision variables. Furthermore, for simplicity in discretization, a integral formulation of the dynamical equations is considered. Thereby, the problem is converted into a mathematical programming problem which can be solved by well-developed parameter optimization algorithms. Through a numerical implementation we show the efficiency of the proposed method via comparing with a classical pseudospectral method and other discretization approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.