Abstract

We report on the development, implementation and validation of a new Lattice Boltzmann method (LBM) for the numerical simulation of three-dimensional multiphase flows (here with only two components) with both high density ratio and high Reynolds number. This method is based in part on, but aims at achieving a higher computational efficiency than Inamuro et al.’s model (Inamuro et al., 2004). Here, we use a LBM to solve both a pressureless Navier–Stokes equation, in which the implementation of viscous terms is improved, and a pressure Poisson equation (using different distribution functions and a D3Q19 lattice scheme); additionally, we propose a new diffusive interface capturing method, based on the Cahn–Hilliard equation, which is also solved with a LBM. To achieve maximum efficiency, the entire model is implemented and solved on a heavily parallel GPGPU co-processor. The proposed algorithm is applied to several test cases, such as a splashing droplet, a rising bubble, and a braking ocean wave. In all cases, numerical results are found to agree very well with reference data, and/or to converge with the discretization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.