Abstract

In the Face Super-Resolution (FSR) task, it is important to precisely recover facial textures while maintaining facial contours for realistic high resolution faces. Although several CNN-based FSR methods have achieved great performance, they fail in restoring the facial contours due to the limitation of local convolutions. In contrast, Transformer-based methods which use self-attention as the basic component, are expert in modeling long-range dependencies between image patches. However, learning long-range dependencies often deteriorates facial textures due to the lack of locality. Therefore, a question is naturally raised: <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">how to effectively combine the superiority of CNN and Transformer for better reconstructing faces?</i> To address this issue, we propose an Efficient Latent Style guided Transformer-CNN framework for FSR called <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ELSFace</b> , which can sufficiently integrate the advantages of CNN and Transformer. The framework consists of a Feature Preparation Stage and a Feature Carving Stage. Basic facial contours and textures are generated in the Feature Preparation Stage, and separately guided by latent styles, so that facial details are better represented in reconstruction. CNN and Transformer streams in the Feature Carving Stage are used to individually restore facial textures and facial contours, respectively in a parallel recursive way. Considering the negligence of high-frequency features when learning the long-range dependencies, we design the High-Frequency Enhancement Block (HFEB) in the Transformer stream. The Sharp Loss is also proposed for better perceptual quality in optimization. Extensive experimental results demonstrate that our ELSFace can achieve the best results among all metrics compared to the state-of-the-art CNN and Transformer-based methods on commonly used datasets and real-world tasks. Meanwhile, our ELSFace method has the least model parameters and running time. The codes are released at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/FVL2020/ELSFace</uri> .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.