Abstract

We introduce hashed random preloaded subsets (HARPS), a highly scalable key predistribution (KPD) scheme employing only symmetric cryptographic primitives. HARPS is ideally suited for resource constrained nodes that need to operate for extended periods without active involvement of a trusted authority (TA), as is usually the case for nodes forming ad hoc networks (AHNs). HARPS, a probabilistic KPD scheme, is a generalization of two other probabilistic KPDs. The first, random preloaded subsets (RPSs), is based on random intersection of keys preloaded in nodes. The second, proposed by Leighton and Micali (LM) is a scheme employing repeated applications of a cryptographic hash function. We investigate many desired properties of HARPS like scalability, computational and storage efficiency, flexibility in deployment modes, renewability, ease of extension to multicast scenarios, ability to cater for broadcast authentication, broadcast encryption, etc., to support its candidacy as an enabler for ad hoc network security. We analyze and compare the performance of the three schemes and show that HARPS has significant advantages over other KPDs, and in particular, over RPS and LM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.