Abstract

Cationic silane complexes of general structure (POCOP)Ir(H)(HSiR(3)) {POCOP = 2,6-[OP(tBu)(2)](2)C(6)H(3)} catalyze hydrosilylations of CO(2). Using bulky silanes results in formation of bis(silyl)acetals and methyl silyl ethers as well as siloxanes and CH(4). Using less bulky silanes such as Me(2)EtSiH or Me(2)PhSiH results in rapid formation of CH(4) and siloxane with no detection of bis(silyl)acetal and methyl silyl ether intermediates. The catalyst system is long-lived, and 8300 turnovers can be achieved using Me(2)PhSiH with a 0.0077 mol % loading of iridium. The proposed mechanism for the conversion of CO(2) to CH(4) involves initial formation of the unobserved HCOOSiR(3). This formate ester is then reduced sequentially to R(3)SiOCH(2)OSiR(3), then R(3)SiOCH(3), and finally to R(3)SiOSiR(3) and CH(4).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call