Abstract

A new method has been developed to design a focused library based on available active compounds using protein-compound docking simulations. This method was applied to the design of a focused library for cytochrome P450 (CYP) ligands, not only to distinguish CYP ligands from other compounds but also to identify the putative ligands for a particular CYP. Principal component analysis (PCA) was applied to the protein-compound affinity matrix, which was obtained by thorough docking calculations between a large set of protein pockets and chemical compounds. Each compound was depicted as a point in the PCA space. Compounds that were close to the known active compounds were selected as candidate hit compounds. A machine-learning technique optimized the docking scores of the protein-compound affinity matrix to maximize the database enrichment of the known active compounds, providing an optimized focused library.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.