Abstract

AbstractA dual‐time implicit mesh‐less scheme is presented for calculation of compressible inviscid flow equations. The Taylor series least‐square method is used for approximation of spatial derivatives at each node which leads to a central difference discretization. Several convergence acceleration techniques such as local time stepping, enthalpy damping and residual smoothing are adopted in this approach. The capabilities of the method are demonstrated by flow computations around single and multi‐element airfoils at subsonic, transonic and supersonic flow conditions. Results are presented which indicate good agreements with other reliable finite‐volume results. The computational time is considerably reduced when using the proposed mesh‐less method compared with the explicit mesh‐less and finite‐volume schemes using the same point distributions. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.