Abstract

An efficient implementation of the "cluster-in-molecule" (CIM) approach is presented for performing local electron correlation calculations in a basis of orthogonal occupied and virtual localized molecular orbitals (LMOs). The main idea of this approach is that significant excitation amplitudes can be approximately obtained by solving the coupled cluster (or Moller-Plesset perturbation theory) equations of a series of "clusters," each of which contains a subset of occupied and virtual LMOs. In the present implementation, we have proposed a simple approach for constructing virtual LMOs of clusters, and new ways of constructing clusters and extracting the correlation contributions from calculations on clusters, which are more efficient than those suggested in the original work. More importantly, linear scaling of computational time of the CIM approach is achieved by evaluating the transformed two-electron integrals over LMOs using simple truncation techniques in limited operations (independent of the molecular size). With typical thresholds, for a variety of molecules our test calculations demonstrate that more than 99% of the conventional MP2 or coupled cluster with doubles correlation energies can be recovered in the present CIM approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.