Abstract

Kernel density estimation (KDE) is a statistical technique used to estimate the probability density function of a sample set with unknown density function. It is considered a fundamental data-smoothing problem for use with large datasets, and is widely applied in areas such as climatology and biometry. Due to the large volumes of data that these problems usually process, KDE is a computationally challenging problem. Current HPC platforms with built-in accelerators have an enormous computing power, but they have to be programmed efficiently in order to take advantage of that power. We have developed a novel strategy to compute KDE using bounded kernels, trying to minimize memory accesses, and implemented it as a parallel program targeting multi-core and many-core processors. The efficiency of our code has been tested with different datasets, obtaining impressive levels of acceleration when taking as reference alternative, state-of-the-art KDE implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.