Abstract

Aiming at addressing the security and efficiency challenges during image transmission, an efficient image cryptosystem utilizing difference matrix and genetic algorithm is proposed in this paper. A difference matrix is a typical combinatorial structure that exhibits properties of discretization and approximate uniformity. It can serve as a pseudo-random sequence, offering various scrambling techniques while occupying a small storage space. The genetic algorithm generates multiple ciphertext images with strong randomness through local crossover and mutation operations, then obtains high-quality ciphertext images through multiple iterations using the optimal preservation strategy. The whole encryption process is divided into three stages: first, the difference matrix is generated; second, it is utilized for initial encryption to ensure that the resulting ciphertext image has relatively good initial randomness; finally, multiple rounds of local genetic operations are used to optimize the output. The proposed cryptosystem is demonstrated to be effective and robust through simulation experiments and statistical analyses, highlighting its superiority over other existing algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call