Abstract

Microsatellites, or simple sequence repeats (SSRs), especially those with long-core motifs (tri-, tetra-, penta-, and hexa-nucleotide) represent an excellent tool for DNA fingerprinting. SSRs with long-core motifs are preferred since neighbor alleles are more easily separated and identified from each other, which render the interpretation of electropherograms and the true alleles more reliable. In the present work, with the purpose of characterizing a set of core SSR markers with long-core motifs for well fingerprinting clonal cultivars of tea (Camellia sinensis), we analyzed 66 elite clonal tea cultivars in China with 33 initially-chosen long-core motif SSR markers covering all the 15 linkage groups of tea plant genome. A set of 6 SSR markers were conclusively selected as core SSR markers after further selection. The polymorphic information content (PIC) of the core SSR markers was >0.5, with ≤5 alleles in each marker containing 10 or fewer genotypes. Phylogenetic analysis revealed that the core SSR markers were not strongly correlated with the trait ‘cultivar processing-property’. The combined probability of identity (PID) between two random cultivars for the whole set of 6 SSR markers was estimated to be 2.22 × 10−5, which was quite low, confirmed the usefulness of the proposed SSR markers for fingerprinting analyses in Camellia sinensis. Moreover, for the sake of quickly discriminating the clonal tea cultivars, a cultivar identification diagram (CID) was subsequently established using these core markers, which fully reflected the identification process and provided the immediate information about which SSR markers were needed to identify a cultivar chosen among the tested ones. The results suggested that long-core motif SSR markers used in the investigation contributed to the accurate and efficient identification of the clonal tea cultivars and enabled the protection of intellectual property.

Highlights

  • Tea produced from fresh leaves of the tea plant Camellia sinensis (L.) O

  • For the sake of providing a practical method of identification of the clonal tea cultivars, ensuring the protection of intellectual property, we aimed to obtain a new set of long-core motif SSR markers, and to establish a cultivar identification diagram (CID) based on the suggested necessary SSR markers and the genotyping data revealed, fully reflecting the identification process and providing the immediate information about which SSR markers are needed to identify a cultivars chosen among the tested ones

  • The average values of number of alleles (NA), Ho and polymorphic information content (PIC) were all lower than those of Tan reported (Tan et al 2015), where NA, Ho and PIC was 10.4, 0.701, 0.704, respectively, which mainly owing to the 33 SSR markers used were all long-core motif ones

Read more

Summary

Introduction

Tea produced from fresh leaves of the tea plant Camellia sinensis (L.) O. Tea plant is a woody evergreen plant of the genus Camellia belonging to the family Theaceae, which has been cultivated in more than fifty countries including Asia, Africa, South America, Europe, Oceania, and contributed to massive economic development in. In 2013, 3.52 million hectares of tea plants were harvested, producing 5.34 million tons of tea (FAO, http://faostat.fao.org/). The clonal tea cultivars are characterized by a regular and uniform development of shoots and leaves period, leading to a stable tea quality, and improved tea yield (Wachira et al 1995; Fang et al 2012; Yao et al 2011). Tea acreage and production have increased continuously, partially as a result of the release and extension of clonal tea cultivars (Bandyopadhyay 2011)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call