Abstract

The scale and complexity of the quantum system to which real-space quantum Monte Carlo (QMC) can be applied in part depends on the representation and memory usage of the trial wavefunction. B-splines, the computationally most efficient basis set, can have memory requirements exceeding the capacity of a single computational node. This situation has traditionally forced a difficult choice of either using slow internode communication or a potentially less accurate but smaller basis set such as Gaussians. Here, we introduce a hybrid representation of the single particle orbitals that combine a localized atomic basis set around atomic cores and B-splines in the interstitial regions to reduce the memory usage while retaining the high speed of evaluation and either retaining or increasing overall accuracy. We present a benchmark calculation for NiO demonstrating a superior accuracy while using only one eighth of the memory required for conventional B-splines. The hybrid orbital representation therefore expands the overall range of systems that can be practically studied with QMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.