Abstract

Recent research efforts have shown that wireless networks can benefit from network coding (NC) technology in terms of bandwidth, robustness to packet losses, delay and energy consumption. However, NC-enabled wireless networks are susceptible to a severe security threat, known as data pollution attack, where a malicious node injects into the network polluted packets that prevent the destination nodes from decoding correctly. Due to recoding, occurred at the intermediate nodes, according to the core principle of NC, the polluted packets propagate quickly into other packets and corrupt bunches of legitimate packets leading to network resource waste. Hence, a lot of research effort has been devoted to schemes against data pollution attacks. Homomorphic MAC-based schemes are a promising solution against data pollution attacks. However, most of them are susceptible to a new type of pollution attack, called tag pollution attack, where an adversary node randomly modifies tags appended to the end of the transmitted packets. Therefore, in this paper, we propose an efficient homomorphic message authentication code-based scheme, called HMAC, providing resistance against data pollution attacks and tag pollution attacks in NC-enabled wireless networks. Our proposed scheme makes use of three types of homomorphic tags (i.e., MACs, D-MACs and one signature) which are appended to the end of the coded packet. Our results show that the proposed HMAC scheme is more efficient compared to other competitive tag pollution immune schemes in terms of complexity, communication overhead and key storage overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call