Abstract

Higher order finite element discretizations, although providing higher accuracy, are considered to be computationally expensive and of limited use for large-scale problems. In this paper, we have developed an efficient iterative solver for solving large-scale quadratic finite element problems. The proposed approach shares some common features with geometric multigrid methods but does not need structured grids to create the coarse problem. This leads to a robust method applicable to finite element problems discretized by unstructured meshes such as those from adaptive remeshing strategies. The method is based on specific properties of hierarchical quadratic bases. It can be combined with an algebraic multigrid (AMG) preconditioner or with other algebraic multilevel block factorizations. The algorithm can be accelerated by flexible Krylov subspace methods. We present some numerical results on the convection–diffusion and linear elasticity problems to illustrate the efficiency and the robustness of the presented algorithm. In these experiments, the performance of the proposed method is compared with that of an AMG preconditioner and other iterative solvers. Our approach requires less computing time and less memory storage. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.