Abstract

The heap-based optimizer (HBO) is an innovative meta-heuristic inspired by human social behavior. In this research, binary adaptations of the heap-based optimizer B_HBO are presented and used to determine the optimal features for classifications in wrapping form. In addition, HBO balances exploration and exploitation by employing self-adaptive parameters that can adaptively search the solution domain for the optimal solution. In the feature selection domain, the presented algorithms for the binary Heap-based optimizer B_HBO are used to find feature subsets that maximize classification performance while lowering the number of selected features. The textitk-nearest neighbor (textitk-NN) classifier ensures that the selected features are significant. The new binary methods are compared to eight common optimization methods recently employed in this field, including Ant Lion Optimization (ALO), Archimedes Optimization Algorithm (AOA), Backtracking Search Algorithm (BSA), Crow Search Algorithm (CSA), Levy flight distribution (LFD), Particle Swarm Optimization (PSO), Slime Mold Algorithm (SMA), and Tree Seed Algorithm (TSA) in terms of fitness, accuracy, precision, sensitivity, F-score, the number of selected features, and statistical tests. Twenty datasets from the UCI repository are evaluated and compared using a set of evaluation indicators. The non-parametric Wilcoxon rank-sum test was used to determine whether the proposed algorithms’ results varied statistically significantly from those of the other compared methods. The comparison analysis demonstrates that B_HBO is superior or equivalent to the other algorithms used in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call