Abstract

PurposeThis paper seeks to present an efficient algorithm for the formation of null basis for finite element model discretized as rectangular bending elements. The bases obtained by this algorithm correspond to highly sparse and narrowly banded flexibility matrices and such bases can be considered as an efficient tool for optimal analysis of structures.Design/methodology/approachIn the present method, two graphs are associated with finite element mesh consisting of an “interface graph” and an “associate digraph”. The underlying subgraphs of the self‐equilibrating systems (SESs) (null vectors) are obtained by graph theoretical approaches forming a null basis. Application of unit loads (moments) at the end of the generator of each subgraph results in the corresponding null vector.FindingsIn the present hybrid method, graph theory is used for the formation of null vectors as far as it is possible and then algebraic method is utilized to find the complementary part of the null basis.Originality/valueThis hybrid approach makes the use of pure force method in the finite element analysis feasible. Here, a simplified version of the algorithm is also presented where the SESs for weighted graphs are obtained using an analytical approach. Thus, the formation of null bases is achieved using the least amount of algebraic operations, resulting in substantial saving in computational time and storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.