Abstract

Next Generation Sequencing techniques have resulted in an exponential growth in the generation of genetics data, the amount of which will soon rival, if not overtake, other Big Data fields, such as astronomy and streaming video services. To become useful, this data requires processing by a complex pipeline of algorithms, taking multiple days even on large clusters. The mapping stage of such genomics pipelines, which maps the short reads onto a reference genome, takes up a significant portion of execution time. BWA-MEM is the de-facto industry-standard for the mapping stage. Here, a GPU-accelerated implementation of BWA-MEM is proposed. The Seed Extension phase, one of the three main BWA-MEM algorithm phases that requires between 30%-50% of overall processing time, is offloaded onto the GPU. A thorough design space analysis is presented for an optimized mapping of this phase onto the GPU. The re- sulting systolic-array based implementation obtains a two- fold overall application-level speedup, which is the maximum theoretically achievable speedup. Moreover, this speedup is sustained for systems with up to twenty-two logical cores. Based on the findings, a number of suggestions are made to improve GPU architecture, resulting in potentially greatly increased performance for bioinformatics-class algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.