Abstract

Hardware/software partitioning is an essential step in hardware/software co-design. For large size problems, it is difficult to consider both solution quality and time. This paper presents an efficient GPU-based parallel tabu search algorithm (GPTS) for HW/SW partitioning. A single GPU kernel of compacting neighborhood is proposed to reduce the amount of GPU global memory accesses theoretically. A kernel fusion strategy is further proposed to reduce the amount of GPU global memory accesses of GPTS. To further minimize the transfer overhead of GPTS between CPU and GPU, an optimized transfer strategy for GPU-based tabu evaluation is proposed, which considers that all the candidates do not satisfy the given constraint. Experiments show that GPTS outperforms state-of-the-art work of tabu search and is competitive with other methods for HW/SW partitioning. The proposed parallelization is significant when considering the ordinary GPU platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.