Abstract

Maximizing the sum of two generalized Rayleigh quotients (SRQ) can be reformulated as a one-dimensional optimization problem, where the function value evaluations are reduced to solving semi-definite programming (SDP) subproblems. In this paper, we first use the dual SDP subproblem to construct an explicit overestimation and then propose a branch-and-bound algorithm to globally solve (SRQ). Numerical results demonstrate that it is even more efficient than the recent SDP-based heuristic algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.